Sultan's Blog

SULTANTI HERMININGSIH, S.Si. GURU MATEMATIKA SMA 1 MOJOTENGAH WONOSOBO

WANITA CANTIK 26/12/2012

Filed under: Uncategorized — aliyah firzanah @ 4:37 pm

Wanita cantik ialah:

1.Melukis kekuatan melalui masalah

2.Tersenyum saat tertekan

3.Tertawa saat hati sedang menangis
4.Tabah di saat terhina
5.Mempersona kerana memaafkan
6.Mengasihi tanpa balasan
7.Bertambah kuat dalam doa & pengharapan Ilahi…

Ya Allah… Walaupun aku tidak cantik dimata manusia, cukuplah sekadar cantik dihadapan-MU

 

TEORI HIMPUNAN SEMESTA DIDALAM MENGENALI SIFAT SIFAT SANG PENCIPTA DAN CIPTAANNYA 23/10/2012

Filed under: Uncategorized — aliyah firzanah @ 8:47 pm

Didalam teori dasar himpunan diajarkan tentang pengertian dasar himpunan semesta dan himpunan himpunan yang berada didalamnya. setiap himpunan bilangan merupakan himpunan bagian dari himpunan semesta&semua himpunan itu terangkum didalam himpunan semesta.

jika himpunan himpunan bilangan menggambarkan ciptaan ciptaan Sang Pencipta, tentu saja secara logika bahwa Sang Pencipta mencakup semua ciptaanNya…inilah bukti sifat Maha Besar bagi Tuhan. analog dengan, semua himpunan merupakan himpunan bagian dari himpunan semesta dan tidak mungkin berlaku kebalikannya(himpunan semesta merupakan himpunan bagian dari himpunan himpunan yang lebih kecil elemen anggotanya).

Sesuatu yang limited(terbatas) bisa berada didalam sesuatu yang unlimited(tak terbatas), tetapi tidak masuk akal jika sebaliknya. jadi sangatlah tidak masuk logika bila ZAT yang unlimited yang Maha Besar&meliputi segalanya bisa berada didalam tubuh zat yang limited….Wallahu a’lam bish-Shawab

 

KEUNIKAN ANGKA 6 DAN 9(Rahayuning Nuraini XI IPA2) 13/04/2012

Filed under: Uncategorized — aliyah firzanah @ 10:00 am

Kita tentu tidak asing lagi dengan operasi-operasi hitung seperti opearsi tambah, kurang, kali dan bagi. Ternyata dibalik angka-angka yang yang terdapat keunikan tersendiri yang bisa jadi belum kita sadari.

Disini kita akan membahas keunikan dari angka 6 dan angka 9 yang disarikan dari berbagai sumber :
Bilangan 666…666
keunikan-keunikan angka 6 :
1 + 2 + 3 + 4 + 5 + 6 = 21
1 + 2 + 3 + …….+ 66 = 2211
1 + 2 + 3 + …….+ 666 = 222111
1 + 2 + 3 + …….+ 6666 = 22221111
1 + 2 + 3 + …….+ 66666 = 2222211111
1 + 2 + 3 + …….+ 666666 = 222222111111
Sekarang coba ilustrasikan jawaban untuk soal berikut ini.
1 + 2 + 3 + …+ n = 222…222111…111 (banyak angka 2 dan 1 masing-masing 2009 digit)
Tentukan nilai n?
Secara matematika, ada beberapa hal unik dari angka 666 :
* merupakan angka palindrom (simetris): 666
* Merupakan penjumlahan dari 62=36 angka pertama yakni 1+2+3+4..….+35+36 =666
* Total bilangan prima hingga 666 berjumlah 121 bilangan yang merupakan kuadrat dari 11.
* 6=(32) − (22) + 1
* 66=(34) − (24) + 1
* 666=(36) − (26) + 1
* Total dari jumlah 7 bilangan kuadrat prima pertama yakni : 22 + 32 + 52 + 72 + 112 + 132 + 172 = 666
* Dalam angka Romawi, 666 direpresentasikan sebagai DCLXVI (D = 500, C = 100, L = 50, X = 10, V = 5, I = 1). DIC LVX merupaan representasi dari dicit lux. Dicit lux kemudian dikenal sebagai suara cahaya yang diidentikan dengan angka setan.
Bagaimana dengan angka 9 ?
Cobalah cari hasil dari 63 x 99.
Bagaimanakah cara kita menyelesaikannya?
Salah satu cara untuk menghitung 63 x 99 adalah dengan perkalian bersusun. Tetapi, ada cara lain untuk menghitung hasil kali kedua bilangan tersebut, yaitu sebagai berikut :
Karena 99 = 100 – 1,
Maka 63 x 99 = 63 ( 100 – 1 )
= 63. 100 – 63. 1
= 6300 – 63
= 6237
Untuk mengalikan 999 x 27 dapat diselesaikan seperti berikut :
Karena 999 = 1000 – 1
Maka 999 x 27 = (1000 – 1) x 27
= 2700 – 27
= 26.973
Selanjutnya bagaimanakah dengan hasil dari misalnya 52 x 999 ? Cobalah kerjakan dengan teknik seperti tadi. Apabila keterangan, contoh dan soal di atas telah dipahami, selanjutnya kita akan mengeksploitasi keunikan angka 9 lainnya. Pada pembagian bilangan bulat oleh angka 9, ada hal-hal yang sangat unik. Mari kita perhatikan contohnya: @unikqu
Contoh 1 :
Jika 12 dibagi oleh 9, maka hasilnya adalah 1 dan sisanya 3.
Jika angka-angka pada 12, yaitu 1 dan 2 dijumlahkan maka hasilnya 1 + 2 = 3 (sisa pembagian oleh 9).
Contoh 2 :
Jika 78 dibagi oleh 9, maka hasilnya adalah 8 dan sisanya adalah 6.
Jika angka-angka pada 78, yaitu 7 dan 8 dijumlahkan maka hasilnya 7 + 8 = 15. Selanjutnya jika angka-angka pada 15, yaitu 1 dan 5 dijumlahkan maka hasilnya 1 + 5 = 6 (sisa pembagian oleh 9).
Contoh 3 :
Jika 878 dibagi oleh 9, maka hasilnya adalah 97 dan sisanya adalah 5.
Jika angka-angka pada 878, yaitu 8, 7 dan 8 dijumlahkan maka hasilnya 8 + 7 + 8 = 23. Selanjutnya jika angka-angka pada 23, yaitu 2 dan 3 dijumlahkan maka hasilnya 2 + 3 = 5 (sisa pembagian oleh 9).
Dari contoh-contoh di atas dapat disimpulkan “ Setiap bilangan bulat yang dibagi oleh 9, maka sisanya adalah jumlah berulang dari angka-angka yang terdapat pada bilangan yang dibagi itu sampai memperoleh sebuah bilangan 0 sampai 8 “.
Sifat lain yang mempesona dari angka 9 dapat dilihat dari hasil kali bilangan 12345679 dengan 9 buah bilangan asli kelipatan 9 yang pertama sebagai berikut :
12345679 x 9 = 111.111.111
12345679 x 18 = 222.222.222
12345679 x 27 = 333.333.333
12345679 x 36 = 444.444.444
12345679 x 45 = 555.555.555
12345679 x 54 = 666.666.666
12345679 x 63 = 777.777.777
12345679 x 72 = 888.888.888
12345679 x 81 = 999.999.999
Sekarang coba sendiri oleh anda, tentang keistimewaan lain dari angka 9, dengan membuat hasil kali bilangan 123456789 dengan sembilan buah bilangan asli kelipatan 9 yang pertama. Adakah hal yang menarik dari hasil kali tersebut ?@unikqu
Daftar hasil kali bilangan 987654321 dengan sembilan bilangan asli kelipatan 9 yang pertama tampak seperti berikut :
987654321 x 9 = 8.888.888.889
987654321 x 18 = 17.777.777.778
987654321 x 27 = 26.666.666.667
987654321 x 36 = 35.555.555.556
987654321 x 45 = 44.444.444.445
987654321 x 54 = 53.333.333.334
987654321 x 63 = 62.222.222.223
987654321 x 72 = 71.111.111.112
987654321 x 81 = 80.000.000.001
Berikut hasil keunikan dari angka 9.
1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
Ini juga :
9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888
Satu
0 x 9 + 0 = 0
1 x 9 + 1 = 10
12 x 9 + 2 = 110
123 x 9 + 3 = 1110
1234 x 9 + 4 = 11110
12345 x 9 + 5 = 111110
123456 x 9 + 6 = 1111110
1234567 x 9 + 7 = 11111110
12345678 x 9 + 8 = 111111110
123456789 x 9 + 9 = 1111111110
Dua
1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111 = 123456787654321
111111111 x 111111111 = 12345678987654321
Tiga
1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321
Empat
1 x 18 + 1 = 19
12 x 18 + 2 = 218
123 x 18 + 3 = 2217
1234 x 18 + 4 = 22216
12345 x 18 + 5 = 222215
123456 x 18 + 6 = 2222214
1234567 x 18 + 7 = 22222213
12345678 x 18 + 8 = 222222212
123456789 x 18 + 9 = 2222222211
Lima
123456789 + 987654321 = 1111111110
1 x 142857 = 142857 (angka sama)
2 x 142857 = 285714 (angka sama beda urutan )
3 x 142857 = 428571 (angka sama beda urutan)
4 x 142857 = 571428 (angka sama beda urutan )
5 x 142857 = 714285 (angka sama beda urutan)
6 x 142857 = 857142 (angka sama beda urutan)
7 x 142857 = 999999 (hasil yang fantastis!)
Enam
Bilangan sembarang jika dikalikan 9, kemudian angka-angka hasilnya dijumlahkan, maka hasilnya = 9. Mari kita buktikan.
1 x 9 = 9
2 x 9 = 18, jumlah 1 + 8 = 9
3 x 9 = 27, jumlah 2 + 7 = 9
4 x 9 = 36, jumlah 3 + 6 = 9
5 x 9 = 45, jumlah 4 + 5 = 9
6 x 9 = 54, jumlah 5 + 4 = 9
7 x 9 = 63, jumlah 6 + 3 = 9
8 x 9 = 72, jumlah 7 + 2 = 9
9 x 9 = 81, jumlah 8 + 1 = 9
10 x 9 = 90, jumlah 9 + 0 = 9, dst., sampai tak terhingga.
Tujuh
22 x 9 = 198,
cara cepatnya 2 x 9 = 18, lalu selipkan angka 9 ditengah, jadi 198.
33 x 9 = 297
44 x 9 = 396
55 x 9 = 495
66 x 9 = 594
77 x 9 = 693
88 x 9 = 792
99 x 9 = 891
Jika angka kembar 3 digit, maka tinggal selipkan 99 ditengahnya. Kita buktikan ya!
222 x 9 = 1998, cara cepat 2 x 9 = 18, selipkan 99 ditengah
333 x 9 = 2997
444 x 9 = 3996
555 x 9 = 4995
Unik kan…
 

Angka Unik 24/03/2012

Filed under: Uncategorized — aliyah firzanah @ 7:18 am

INDAHNYA MATEMATIKA

BY: RETNO NOVIANA XI IPA 1

1 x 1 = 1 (he he….)

11 x 11 = 121

111 x 111 = 12321

1111 x 1111 = 1234321

1111111 x 111111 = 1234567654321

11 x 12 = 132

11 x 63 = 693.

11 x 72 = 792

11 x 81 = 891

11 x 93 = 9 (9 + 3) 3 = 1023

11 x 125 = 1 (1+2) (2 + 5) 5 = 1375

Ternyata Matematika itu indah.

Sekarang ke angka 5.

5 x 5 = 25

15 x 15 = 225

Dan 25 x 25 = 625

Itu semua masih pemanasan dulu, jadi guampang pooll.

Kalo 35 x 35, 55 x 55, 75 x 75, 95 x 95, 105 x 105 ???

Ga usah binun, sekarang kita lihat cara indah berikut :

35 x 35, kakaknya 3 itu kan 4 dan 3 x 4 = 12, nah kalo 5 x 5 = 25

Jadi hasilnya 1225. Wah ternyata gampangkan!!!

45 x 45 = (4 x 5) (5 x 5) = 2025

55 x 55 = (5 x 6) (5 x 5) = 3025

95 x 95 = (9 x 10) (5 x 5) = 9025

105 x 105 = (10 x 11) (5 x 5) = 11025

Nah indah sekali matematika.

Sekarang angka lainnya

12  x 18 = ….

Hitung dulu!!!

Ternyata hasilnya 216, iyakan!!!

Sekarang 23 x 27 = …

Gampang juga, hasilnya 612

Sekarang 64 x 66.

Ga usah grogi, apalagi panggil bala bantuan.

Okey caranya begini

Kakanya 6kan7 dan 6 x 7 = 42, truz 4 x 6 = 24

Jadi hasilnya 4224. Gampangkan!!!

Sekarang 72 x 78 = (7 x 8) (2 x 8) = 5616

Kalo 81 x 89 = (8 x 9) (1 x 9) = 7209

Kalo yang ini ada yang special, 1 x 9 = 9 tulis 09.

Mudahkan!!!

Itulah Keindahan Matematika.

 

(Farida Ariyani XI IPA 1  2011/2012)

Matematika itu unik dan juga mengasyikkan., sebab matematika adalah KEBENARAN, yaitu hasil yang tidak dapat di ubah (disangkal).  Matematika selalu memberikan kesan ‘angker‘ saat kita mendengarnya apalagi mempelajarinya. Tapi dibalik ke’angker’annya ternyata Matematika menyimpan sebuah keindahan. Perhatikan pola-pola perhitungan matematika berikut ini :

Keunikan dari Perkalian 9, Apabila hasilnya di jumlahkan maka akan tetap menghasilkan angka 9
10 x 9 = 90
2 x 9 = 18
3 x 9 = 27
4 x 9 = 36
5 x 9 = 45
6 x 9 = 54
7 x 9 = 63
8 x 9 = 72
9 x 9 = 81

Keunikan dari Perkalian 8, yang apabila ditambah beberapa variasi dalam penjumlahan dan perkaliannya, maka hasilnya akan selalu berurutan.

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

Keunikan dari Perkalian 9, yang apabila ditambah beberapa variasi dalam penjumlahan dan perkaliannya, maka hasilnya akan selalu satu berurutan.

1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
123456789 x 9 +10= 1111111111

Keunikan dari Perkalian 9, yang apabila ditambah beberapa variasi dalam penjumlahan dan perkaliannya, maka hasilnya akan selalu 8 berurutan.

9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888

(0 x 9) + 8 = 8
(9 x 9) + 7 = 88
(98 x 9) + 6 = 888
(987 x 9) + 5 = 8888
(9876 x 9) + 4 = 88888
(98765 x 9) + 3 = 888888
(987654 x 9) + 2 = 8888888
(9876543 x 9) + 1 = 88888888
(98765432 x 9) + 0 = 888888888
(987654321 x 9) – 1 = 8888888888

Keunikan dari Perkalian 37, yang apabila ditambah beberapa variasi dalam penjumlahan dan perkaliannya, maka hasilnya akan unik.

3 x 37 = 111
6 x 37 = 222
9 x 37 = 333
12 x 37= 444
15 x 37 = 555
18 x 37 = 666
21 x 37 = 777
24 x 37 = 888
27 x 37 = 999

Keunikan dari Perkalian 8, yang apabila ditambah beberapa variasi dalam penjumlahan dan perkaliannya, maka hasilnya akan selalu berurutan dari besar ke kecil.

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

Keunikan dari Perpangkatan kuadrat

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

Keunikan dari Perkalian satu satu

1 x 1 = 1

11 x 11 = 121

111 x 111 = 12321

1111 x 1111 = 1234321

11111 x 11111 = 123454321

111111 x 111111 = 12345654321

1111111 x 1111111 = 1234567654321

11111111 x 11111111 = 123456787654321

111111111 x 111111111 = 12345678987654321

“Matematika adalah sebuah Kebenaran. Tidak akan ada yang bisa menyangkal hasilnya. Juga salah satu keindahan yang datang dari Tuhan.”

 

SUBHANALLAH 26/06/2011

Filed under: Uncategorized — aliyah firzanah @ 8:36 pm

UNIKNYA MATEMATIKA MELALUI BARISAN ANGKA-ANGKA

 ANGKA UNIK

1111111111 = (0123456789 + 9876543210) : 9

111111111 = (012345678 + 876543210) : 8

11111111 = (01234567 + 76543210) : 7

1111111 = (0123456 + 6543210) : 6

111111 = (012345 + 543210) : 5

11111 = (01234 + 43210) : 4

1111 = (0123 + 3210) : 3

111 = (012 + 210) : 2

11 = (01 + 10) : 1

 

1 = 1^2

121 = 11^2

12321 = 111^2

1234321 = 1111^2

123454321 = 11111^2

12345654321 = 111111^2

1234567654321 = 1111111^2

123456787654321 = 11111111^2

12345678987654321 = 111111111^2

1 x 8 + 1 = 9

12 x 8 + 2 = 98

123 x 8 + 3 = 987

1234 x 8 + 4 = 9876

12345 x 8 + 5 = 98765

123456 x 8 + 6 = 987654

1234567 x 8 + 7 = 98765543

12345678 x 8 + 8 = 98765432

123456789 x 8 + 9 = 987654321

9 x 9 + 7 = 88

98 x 9 + 6 = 888

987 x 9 + 5 = 888

9876 x 9 + 4 = 88888

98765 x 9 + 3 = 888888

987654 x 9 + 2 = 8888888

9876543 x 9 + 1 = 88888888

98765432 x 9 + 0 = 888888888

1 x 9 + 2 = 11

12 x 9 + 3 = 111

123 x 9 + 4 = 1111

1234 x 9 + 5 = 11111

12345 x 9 + 6 = 111111

123456 x 9 + 7 = 1111111

1234567 x 9 + 8 = 11111111

12345678 x 9 + 9 = 111111111

123456789 x 9 + 9 = 111111111 

 

1 x 1 = 1

11 x 11 = 121

111 x 111 = 12321

1111 x 1111 = 1234321

11111 x 11111 = 123454321

111111 x 111111 = 12345654321

1111111 x 1111111 = 1234567654321

11111111 x 11111111 = 123456787654321

111111111 x 111111111 = 12345678987654321 

 

9 x 9 = 81

99 x 99 = 9801

999 x 999 = 998001

9999 x 9999 = 99980001

99999 x 99999 = 9999800001

999999 x 999999 = 999998000001

9999999 x 9999999 = 99999980000001

9999…9999 x 99999999 = 9999999800000001

999999999 x 999999999 = 999999998000000001

6 x 7 = 42

66 x 67 = 4422

666 x 667 = 444222

6666 x 6667 = 44442222

66666 x 66667 = 4444422222

666666 x 666667 = 444444222222

6666666 x 6666667 = 44444442222222

66666666 x 66666667 = 4444444422222222

666666666 x 666666667 = 444444444222222222

 

INDAHNYA ANGKA

Filed under: Uncategorized — aliyah firzanah @ 8:32 pm

Tahukah anda fakta menarik dari angka: 142 857 kalau kamu kalikan angka tersebut dengan angka 1 sampe 6 hasilnya angka-angka di dalam bilangan tersebut hanya berubah tempat aja (tapi semua digit angkanya sama).

142 857 * 1 = 142 857

142 857 * 2 = 285 714

142 857 * 3 = 428 571

142 857 * 4 = 571 428

142 857 * 5 = 714 285

142 857 * 6 = 857 142

dan ketika anda kalikan dengan “7” maka hasilnya adalah 999 999.

ada juga, 142 + 857 = 999,

14 + 28 + 57 = 99.

dan : (142 857)^2 = 20408122449.

20408+122449 = 142 857.

Yang ini dimanakah letak keunikannya ??

1089 x 1 = 1089

1089 x 2 = 2178

1089 x 3 = 3267

1089 x 4 = 4356

1089 x 5 = 5445

1089 x 6 = 6534

1089 x 7 = 7623

1089 x 8 = 8712

1089 x 9 = 9801

Indah kan

 

MISTERI BILANGAN NOL 28/05/2010

Filed under: Uncategorized — aliyah firzanah @ 9:25 am

Yusmichad Yusdja, Staf peneliti pada Pusat Penelitian dan Pengembangan Sosial dan ekonomi Pertanian IPB

Ratusan tahun yang lalu, manusia hanya mengenal 9 lambang bilangan yakni 1, 2, 2, 3, 5, 6, 7, 8, dan 9. Kemudian, datang angka 0, sehingga jumlah lambang bilangan menjadi 10 buah. Tidak diketahui siapa pencipta bilangan 0, bukti sejarah hanya memperlihatkan bahwa bilangan 0 ditemukan pertama kali dalam zaman Mesir kuno. Waktu itu bilangan nol hanya sebagai lambang. Dalam zaman modern, angka nol digunakan tidak saja sebagai lambang, tetapi juga sebagai bilangan yang turut serta dalam operasi matematika. Kini, penggunaan bilangan nol telah menyusup jauh ke dalam sendi kehidupan manusia. Sistem berhitung tidak mungkin lagi mengabaikan kehadiran bilangan nol, sekalipun bilangan nol itu membuat kekacauan logika. Mari kita lihat.

Nol, penyebab komputer macet

Pelajaran tentang bilangan nol, dari sejak zaman dahulu sampai sekarang selalu menimbulkan kebingungan bagi para pelajar dan mahasiswa, bahkan masyarakat pengguna. Mengapa? Bukankah bilangan nol itu mewakili sesuatu yang tidak ada dan yang tidak ada itu ada, yakni nol. Siapa yang tidak bingung? Tiap kali bilangan nol muncul dalam pelajaran Matematika selalu ada ide yang aneh. Seperti ide jika sesuatu yang ada dikalikan dengan 0 maka menjadi tidak ada. Mungkinkah 5*0 menjadi tidak ada? (* adalah perkalian). Ide ini membuat orang frustrasi. Apakah nol ahli sulap?

Lebih parah lagi-tentu menambah bingung-mengapa 5+0=5 dan 5*0=5 juga? Memang demikian aturannya, karena nol dalam perkalian merupakan bilangan identitas yang sama dengan 1. Jadi 5*0=5*1. Tetapi, benar juga bahwa 5*0=0. Waw. Bagaimana dengan 5o=1, tetapi 50o=1 juga? Ya, sudahlah. Aturan lain tentang nol yang juga misterius adalah bahwa suatu bilangan jika dibagi nol tidak didefinisikan. Maksudnya, bilangan berapa pun yang tidak bisa dibagi dengan nol. Komputer yang canggih bagaimana pun akan mati mendadak jika tiba-tiba bertemu dengan pembagi angka nol. Komputer memang diperintahkan berhenti berpikir jika bertemu sang divisor nol.

Bilangan nol: tunawisma

Bilangan disusun berdasarkan hierarki menurut satu garis lurus. Pada titik awal adalah bilangan nol, kemudian bilangan 1, 2, dan seterusnya. Bilangan yang lebih besar di sebelah kanan dan bilangan yang lebih kecil di sebelah kiri. Semakin jauh ke kanan akan semakin besar bilangan itu. Berdasarkan derajat hierarki (dan birokrasi bilangan), seseorang jika berjalan dari titik 0 terus-menerus menuju angka yang lebih besar ke kanan akan sampai pada bilangan yang tidak terhingga. Tetapi, mungkin juga orang itu sampai pada titik 0 kembali. Bukankah dunia ini bulat? Mungkinkah? Bukankah Columbus mengatakan bahwa kalau ia berlayar terus-menerus ia akan sampai kembali ke Eropa?

Lain lagi. Jika seseorang berangkat dari nol, ia tidak mungkin sampai ke bilangan 4 tanpa melewati terlebih dahulu bilangan 1, 2, dan 3. Tetapi, yang lebih aneh adalah pertanyaan mungkinkan seseorang bisa berangkat dari titik nol? Jelas tidak bisa, karena bukankah titik nol sesuatu titik yang tidak ada? Aneh dan sulit dipercaya? Mari kita lihat lebih jauh.

Jika di antara dua bilangan atau antara dua buah titik terdapat sebuah ruas. Setiap bilangan mempunyai sebuah ruas. Jika ruas ini dipotong-potong kemudian titik lingkaran hitam dipindahkan ke tengah-tengah ruas, ternyata bilangan 0 tidak mempunyai ruas. Jadi, bilangan nol berada di awang-awang. Bilangan nol tidak mempunyai tempat tinggal alias tunawisma. Itulah sebabnya, mengapa bilangan nol harus menempel pada bilangan lain, misalnya, pada angka 1 membentuk bilangan 10, 100, 109, 10.403 dan sebagainya. Jadi, seseorang tidak pernah bisa berangkat dari angka nol menuju angka 4. Kita harus berangkat dari angka 1.

Mudah, tetapi salah

Guru meminta Ani menggambarkan sebuah garis geometrik dari persamaan 3x+7y = 25. Ani berpikir bahwa untuk mendapatkan garis itu diperlukan dua buah titik dari ujung ke ujung. Tetapi, setelah berhitung-hitung, ternyata cuma ada satu titik yang dilewati garis itu, yakni titik A(6, 1), untuk x=6 dan y=1. Sehingga Ani tidak bisa membuat garis itu. Sang guru mengingatkan supaya menggunakan bilangan nol. Ya, itulah jalan keluarnya. Pertama, berikan y=0 diperoleh x=(25-0)/3=8 (dibulatkan), merupakan titik pertama, B(8,0). Selanjutnya berikan x=0 diperoleh y=(25-3.0)/7=4 (dibulatkan), merupakan titik kedua C(0,4). Garis BC, adalah garis yang dicari. Namun, betapa kecewanya sang guru, karena garis itu tidak melalui titik A. Jadi, garis BC itu salah.

Ani membela diri bahwa kesalahan itu sangat kecil dan bisa diabaikan. Guru menyatakan bahwa bukan kecil besarnya kesalahan, tetapi manakah yang benar? Bukankah garis BC itu dapat dibuat melalui titik A? Kata guru, gunakan bilangan nol dengan cara yang benar. Bagaimana kita harus membantu Ani membuat garis yang benar itu? Mudah, kata konsultan Matematika. Mula-mula nilai 25 dalam 3x+7y harus diganti dengan hasil perkalian 3 dan 7 sehingga diperoleh 3x+7y=21.

Selanjutnya, dalam persamaan yang baru, berikan y=0 diperoleh x=21/3=7 (tanpa pembulatan) itulah titik pertama P(6,1). Kemudian berikan nilai x=0 diperoleh y=21/7 = 3 (tanpa pembulatan), itulah titik kedua Q(0, 3). Garis PQ adalah garis yang sejajar dengan garis yang dicari, yakni 3x+7y=25. Melalui titik A tarik garis sejajar dengan PQ diperoleh garis P1Q1. Nah, begitulah. Sang murid telah menemukan garis yang benar berkat bantuan bilangan nol.

Akan tetapi, sang guru masih sangat kecewa karena sebenarnya tidak ada satu garis pun yang benar. Bukankah dalam persamaan 3×1+7×2=25 hanya ada satu titik penyelesaian yakni titik A, yang berarti persamaan 3×1+7×2 itu hanya berbentuk sebuah titik? Bahkan pada persamaan 3×1+7×2=21 tidak ada sebuah titik pun yang berada dalam garis PQ. Oleh karena itu, garis PQ dalam sistem bilangan bulat, sebenarnya tidak ada. Aneh, bilangan nol telah menipu kita. Begitulah kenyataannya, sebuah persamaan tidak selalu berbentuk sebuah garis.

Bergerak, tetapi diam

Bilangan tidak hanya terdiri atas bilangan bulat, tetapi juga ada bilangan desimal antara lain dari 0,1; 0,01; 0,001; dan seterusnya sekuat-kuat kita bisa menyebutnya sampai sedemikian kecilnya. Karena sangat kecil tidak bisa lagi disebut atau tidak terhingga dan pada akhirnya dianggap nol saja. Tetapi, ide ini ternyata sempat membingungkan karena jika bilangan tidak terhingga kecilnya dianggap nol maka berarti nol adalah bilangan terkecil? Padahal, nol mewakili sesuatu yang tidak ada? Waw. Begitulah.

Berdasarkan konsep bilangan desimal dan kontinu, maka garis bilangan yang kita pakai ternyata tidak sesederhana itu karena antara dua bilangan selalu ada bilangan ke tiga. Jika seseorang melompat dari bilangan 1 ke bilangan 2, tetapi dengan syarat harus melompati terlebih dahulu ke bilangan desimal yang terdekat, bisakah? Berapakah bilangan desimal terdekat sebelum sampai ke bilangan 2? Bisa saja angka 1/2. Tetapi, anda tidak boleh melompati ke angka 1/2 karena masih ada bilangan yang lebih kecil, yakni 1/4. Seterusnya selalu ada bilangan yang lebih dekat… yakni 0,1 lalu ada 0,01, 0,001, …, 0,000001. demikian seterusnya, sehingga pada akhirnya bilangan yang paling dekat dengan angka 1 adalah bilangan yang demikian kecilnya sehingga dianggap saja nol. Karena bilangan terdekat adalah nol alias tidak ada, maka Anda tidak pernah bisa melompat ke bilangan 2?

Disadur dari: http://www.duniaesai.com/sains/sains16.htm